Visitor

Intent

Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates.

Problem

Many distinct and unrelated operations need to be performed on node objects in a heterogeneous aggregate structure. You want to avoid "polluting" the node classes with these operations. And, you don't want to have to query the type of each node and cast the pointer to the correct type before performing the desired operation.

Discussion

Visitor's primary purpose is to abstract functionality that can be applied to an aggregate hierarchy of "element" objects. The approach encourages designing lightweight Element classes - because processing functionality is removed from their list of responsibilities. New functionality can easily be added to the original inheritance hierarchy by creating a new Visitor subclass.

Visitor implements "double dispatch". OO messages routinely manifest "single dispatch" - the operation that is executed depends on: the name of the request, and the type of the receiver. In "double dispatch", the operation executed depends on: the name of the request, and the type of TWO receivers (the type of the Visitor and the type of the element it visits).

The implementation proceeds as follows. Create a Visitor class hierarchy that defines a pure virtual visit() method in the abstract base class for each concrete derived class in the aggregate node hierarchy. Each visit() method accepts a single argument - a pointer or reference to an original Element derived class.

Each operation to be supported is modelled with a concrete derived class of the Visitor hierarchy. The visit() methods declared in the Visitor base class are now defined in each derived subclass by allocating the "type query and cast" code in the original implementation to the appropriate overloaded visit() method.

Add a single pure virtual accept() method to the base class of the Element hierarchy. accept() is defined to receive a single argument - a pointer or reference to the abstract base class of the Visitor hierarchy.

Each concrete derived class of the Element hierarchy implements the accept() method by simply calling the visit() method on the concrete derived instance of the Visitor hierarchy that it was passed, passing its "this" pointer as the sole argument.

Everything for "elements" and "visitors" is now set-up. When the client needs an operation to be performed, (s)he creates an instance of the Vistor object, calls the accept() method on each Element object, and passes the Visitor object. The accept() method causes flow of control to find the correct Element subclass. Then when the visit() method is invoked, flow of control is vectored to the correct Visitor subclass. accept() dispatch plus visit() dispatch equals double dispatch.

The Visitor pattern makes adding new operations (or utilities) easy - simply add a new Visitor derived class. But, if the subclasses in the aggregate node hierarchy are not stable, keeping the Visitor subclasses in sync requires a prohibitive amount of effort.

An acknowledged objection to the Visitor pattern is that is represents a regression to functional decomposition - separate the algorithms from the data structures. While this is a legitimate interpretation, perhaps a better perspective/rationale is the goal of promoting non-traditional behavior to full object status.

Structure

The NodeVisitor hierarchy is not modeled here. The first dispatch is accept(), and the second dispatch is visit(). Inside each visit() method, we now know the exact type of both the Node entity (the object being passed) and the NodeVisitor entity (the object being messaged).

Example

The Visitor pattern represents an operation to be performed on the elements of an object structure without changing the classes on which it operates. This pattern can be observed in the operation of a taxi company. When a person calls a taxi company (accepting a visitor), the company dispatches a cab to the customer. Upon entering the taxi the customer, or Visitor, is no longer in control of his or her own transportation, the taxi (driver) is. [Michael Duell, "Non-software examples of software design patterns", Object Magazine, Jul 97, p54]

Non-software example

Rules of thumb

The abstract syntax tree of Interpreter is a Composite (therefore Iterator and Visitor are also applicable). [GOF, p255]

Iterator can traverse a Composite. Visitor can apply an operation over a Composite. [GOF, p173]

The Visitor pattern is like a more powerful Command pattern because the visitor may initiate whatever is appropriate for the kind of object it encounters. [Johnson, Huni, Engel, 1995, p8]

The Visitor pattern is the classic technique for recovering lost type information without resorting to dynamic casts. [Vlissides, "Type Laundering", C++ Report, Feb 97, p48]

Notes

The November 2000 issue of JavaPro has an article by James Cooper (author of a Java companion to the GoF) on the Visitor design pattern. He suggests it "turns the tables on our object-oriented model and creates an external class to act on data in other classes ... while this may seem unclean ... there are good reasons for doing it."

His primary example. Suppose you have a hierarchy of Employee-Engineer-Boss. They all enjoy a normal vacation day accrual policy, but, Bosses also participate in a "bonus" vacation day program. As a result, the interface of class Boss is different than that of class Engineer. We cannot polymorphically traverse a Composite-like organization and compute a total of the organization's remaining vacation days. "The Visitor becomes more useful when there are several classes with different interfaces and we want to encapsulate how we get data from these classes."

[It also is useful when you want to perform the right algorithm, based on the type of two (or more) objects (aka "double dispatch"). Example algorithms might be: process a "collision" between different kinds of SpaceGame objects, compute the distance between different kinds of shapes, or compute the intersection between different kinds of shapes.]

His benefits for Visitor include:

Visitor is not good for the situation where "visited" classes are not stable. Every time a new Composite hierarchy derived class is added, every Visitor derived class must be amended.

Notes from the Sep-Oct 2000 issue of IEEE Software. McGraw and Felten (authors of 2 Java security books) describe their Jslint tool (statically scans Java code for security vulnerabilities). The end of the article summarized -

"Jslint parses the source file into a syntax tree that it can traverse using the Visitor design pattern. This pattern encapsulates each operation on a syntax tree into a single object called a Visitor, allowing users to define new operations on a tree without changing the tree elements. It encodes each [security] rule in a single Visitor that traverses the parse tree looking for instances of the violation in question ..... Users can easily port our tool to scan other languages by following three simple steps:"

  1. replace the Java grammar
  2. write a new set of Visitor classes
  3. add a new user interface

C++ Demos | Java Demos | Lab